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Abstract. Non-equilibrium roughening transitions are described and shown to take place 
as a function of deposition rate and temperature. Discussion is given of the physical 
mechanism behind this effect, relating its appearance to the relative magnitudes of the 
vertical and horizontal length scales of surface configurations. The roughening length 
is defined, and several models are considered, one of which gives a finite transition 
temperature. Reference to recent experimental results is made and a phase diagram is 
discussed. 

1. Introduction 

In this paper we wish to discuss a class of what might be called non-equilibrium 
roughening transitions, which are of importance in the field of molecular beam epitaxy 
(MBE) (for a review see Madhukar (1983); for more recent work, Clarke and Vvedensky 
(1987), Das Sarma et al (1987) and Schneider et a1 (1987)). These transitions are to be 
distinguished from the more familiar equilibrium roughening transition as is discussed 
below (Weeks and Gilmer 1979). Some aspects of this problem have been considered 
previously by other authors (Kardar et al 1986, Nozieres and Gallet 1987). However, 
in view of recent experimental evidence that non-equilibrium roughening depends in 
a non-universal way on external parameters (for example on the deposition rate) we 
present here a different approach to the problem. To describe this phenomenon, 
consider a two-dimensional substrate with an external source depositing adatoms at a 
given rate R and let us define the interface width as being the number of incomplete 
layers at a given instant. This we will denote as Z .  In the case (usually associated with 
zero temperature) that the adatoms arrive on the surface and stick to where they land 
it is easy to show (see below) that in the long-time limit 

z - t x  

(here we are following previous nomenclature of Rockett (1988) and Barnett and 
Rockett (1988)) where the T = 0 value is 2 = ;. Generally deposition can be monitored 
in the laboratory by means of diffracted intensity oscillations (Ghaisas and Madhukar 
1985, Singh et al 1986), and a simple interpretation of the observed results requires 
that the oscillations die out as the surface grows increasingly rough. The diffracted 
intensity in the out-of-phase condition is given in the kinematic approximation by 
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$(r) is the column height at lattice site r and sz is evaluated at the out-of-phase 
condition (s, = n/d, d is the lattice spacing). In many laboratory experiments, the 
observed behaviour is such that as t + 00, I + 0. This will be our working definition 
of a rough interface. 

As we will discuss later, there are cases where this condition is not met, but 
the surface is still regarded as rough; in some situations this distinction is one of 
experimental limitations (Lagally and Kariotis 1989). However, from a theoretical 
point of view the loss of diffracted intensity due to surface disorder is a result of 
competing length scales, laterally and vertically. In the literature (for example, Weeks 
et a1 1976) the quantity that is of theoretical interest characterising the surface is the 
column-column height correlation function 

which is the theorist’s means of defining 2. For Gaussian noise (used to describe the 
random deposition of adatoms) the scattered intensity is a simple functional of G(r) .  
In special circumstances, it has been found that the diffracted oscillations can persist 
for rather long times and thus speculation can be made whether genuine steady-state 
oscillations are possible. In figure 1 we show a proposed phase diagram based on our 
rate equation calculations (Kariotis and Lagally 1989), suggesting the existence of two 
special critical temperatures. Below TI  and above T2, a > 0 and the interface width 
grows without bound, hence oscillations must die out. For TI -= T < T2, a = 0 and the 
interface width is finite, and it is likely that oscillations persist indefinitely. 

Figure 1. The growth exponent a for various rates of deposition. The curves marked a, b, 
c refer to increasing rates respectively. TR is the thermodynamic roughening temperature. 

In the following paragraphs we will describe a series of heuristic arguments and 
models, including reference to Monte Carlo simulation and recent experimental data, 
which indicate that true steady-state behaviour may be a realisable effect, at  least in 
principle. In the next section we will discuss the physical criterion in order that there 
be a smooth interface, and then in 53 we will describe two limiting cases, one model 
which is never smooth and one which is never rough by our criterion. Finally in §4 we 
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will give evidence that the binary model can be either rough or smooth, depending on 
the values of the internal parameters. 

An important conclusion of this paper is that i t  is not sufficient to state whether a 
surface is rough or smooth without giving a lateral length scale over which this property 
is supposed to appear. This 'roughening length' may be zero, finite or infinite. In the 
equilibrium case the interface is infinite abovc the roughening temperature TR,  that is, 
the interface width diverges logarithmically with column-column separation. This is 
not a sufficient criterion to result in total loss in diffracted intensity. In the kinematic 
approximation, the diffracted intensity has two parts, the incoherent part (of order N 
for a surface of N columns) and a coherent part (of order N 2  for a flat surface). The 
incoherent part is always present. It  is the strength of the coherent part which is a 
measure of the surface roughness. I t  is apparent that there is a hierarchy of degrees 
of roughness; the simplest and most intuitive is that the surface derivative diverges 
(resulting in a complete absence of coherent intensity). This is the condition with 
which we will work in 44. However, this is a stronger condition than actually occurs in 
practice. Rather, there should be cases where G ( r )  diverges over a finite lateral scale of 
the surface resulting in a partial loss of diffracted intensity. This statement of course 
is made with the supposition that the diffraction experiment be performed with an 
arbitrarily large coherence length. In practice, the coherence length is finite, and hence 
these effects may be observed due to the fact that the lateral scale is an experimental 
parameter, rather than a physical one. We have not been able to obtain anything other 
than an infinite or vanishing roughening length from the simple models here; however, 
the belief that i t  must also take on finite values is based on the observation that there 
is a lateral length scale in the problem which determines the diffusion distance over 
which atoms must be able to migrate in order that the interface be bounded. This is 
the property which we will now discuss. 

2. Finite interface width criterion 

In order to justify the following sections we will reproduce and expand upon an 
argument presented earlier (Kariotis and Lagally 1989). This involves a heuristic 
argument, followed by a quantitative example, describing the conditions under which 
bounded interface growth can occur. For sufficiently small deposition rate, there should 
generally exist an intermediate temperature range in which the interface width is finite. 
Below the roughening temperature any surface fluctuation must have a finite lifetime, 
and so if the deposition rate is lower than this decay rate, it should be possible to 
deposit without creating a rough surface. In order to see this, we propose the following 
construction. In figure 2 we show a typical interface configuration in which the vertical 
and horizontal length scales are Z and k respectively. In equilibrium, k is finite below 
TR and we want to use this knowledge to determine the steady-state conditions under 
which Z is finite also. Now consider a particle at the top of the fluctuation, marked 
A in the figure. The criterion for a finite interface can be expressed in the following 
statement: the interface width will stop growing when the condition is met that a 
particle at A can diffuse to B in the time that it takes for an additional atom to be 
deposited at A. 

To provide a quantitative basis for this statement, we will write a master equation 
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A 

I I 
k 

Figure 2. A typical configuration on the surface showing the vertical and horizontal 
fluctuation scales which characterise the resulting structure due to finite deposition. 

describing a particle hopping on a lattice with a vertical and horizontal structure 
determined by the height and breadth of the surface fluctuation in figure 2. (In this 
problem the transition rates to the left and the right are different.) In particular, the 
transition rates along the surface, up the edge barrier, and down the edge barrier, 
respectively, are 

where Ed,  E ,  and E b  are the hopping energies along the surface, onto an island, and 
off an island, respectively. Because there are n k / Z  sites over which the particle 
moves along the top of an island, for every jump that involves a change in height, the 
average transition rates up and down the incline are 

1 1 1 I 1 1 - -  - +- - -  +- W+ W, nW, w- w, nwd 

since transition rates add inversely. We can solve this simply by taking the continuum 
limit, yielding a one-sided diffusion equation with an effective diffusion and d r i f t  
coefficient respectively 

D f ( W +  + W-) A (7) W- - W,. 

The statement for the interface width to be finite now takes the form k = A / R .  That 
is, the particle must drift a distance k during the period before another atom is added. 
Rearranging the factors in this result, we have an expression for Z in terms of the 
horizontal correlation length, k ,  the binding energies of the adatoms, and the deposition 
rate 

(8) w, 
To complete this formulation, we will replace k with an expression for the thermody- 
namic correlation length, which below TR is given by k(  T) rr < = A exp[c( TR - T)- ' lZ] .  
(Any function k ( T )  will give the same qualitative result, provided k = 0 at T = 0 and 
k > 0 for T > 0.) Using this expression we can find, for fixed rate and fixed binding 
energies, two temperatures which bound regimes where the interface is rough at low T ,  
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smooth at intermediate T and rough again at high T .  These conclusions are expressed 
graphically in figure 1. Above T2 and below TI there is no solution to the equation, 
which we interpret to mean an interface growing arbitrarily rough. For T I  < T < T2 
the equation provides a value of the steady-state interface width. 

3. Two limiting models 

3.1. Poisson growth 

Now we wish to study specific models which might be used to check the results 
obtained in the previous section. Consider the case of T = 0 where the atoms are 
deposited at random, but at a fixed average R, and in each case, the atom sticks where 
i t  lands and does not move at all. This is the case of Poisson statistics. Each column 
grows independently of all others. and we can simply look at the rate of growth of a 
representative column. Call the height of the column above the surface 4, then the 
time rate of change of this height is 

where f = 0, l  is a random function that is completely uncorrelated in time and space. 
The result is that the variable 4 is a Poisson process, and is distributed such that at 
time t the probability of 4 = n is 

(Rt)”e-‘R 
I1 ! 

P ( n , t )  = 

where ( j )  = R. The diffracted intensity at time t in the out-of-phase condition is 

I(.$, = n / a )  = P(2n,  t )  - P ( ( 2 n  + I ) ,  t )  = [cosh(Rt) - ~inh(Rt) ]e - ‘~  (1  1) 

There are no oscillations and the diffracted intensity decays exponentially with time 

,1=0 

to zero. 

3.2. Diffusive model 

Next, consider a somewhat more physical, and also more familiar case (Edwards 
and Wilkinson 1982). Suppose that the deposition is given as a Gaussian process 
with zero mean (which implies that the column heights are given with respect to the 
moving interface) and atoms which land at a given column have a certain probability 
of dropping down to neighbouring columns if the neighbours are less tall. In the 
continuum limit this can be approximated by adding a diffusive term to the equation 
of motion given above for the column heights 

(12) 

This equation describes the evolution of a surface above the x , y  plane, and is easily 
solved in terms of the external driving force 

4 r ( X ,  t )  = J V 2 4 ( X ,  t )  + f(s, t ) .  

4 ( . ~ ,  t )  = s d’x’ dt’ G~(.Y - x’, t - t’)f(X‘, t’) (13) 
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where the Green function in two dimensions is 

The disorder is described by the Gaussian random variable f distributed by 

1 
P L f ( x , t ) ]  = exp (-- 20 s d2xdlf2(.x,t)) 

Although this has somewhat different properties than the distribution used in the 
Poisson case, it suffices for our puposes here with the reminder that there is a constant 
term to the equation which represents the average deposition rate. The diffracted 
intensity is 

Performing the implied integration we have 

where 

Q(r ,  t )  E dx' dt [Go@, t )  - Go(0, t)] '  - log lrl. s 
as t -+ r,. Thus, in the long-time limit this leads to: 

where y~ = J2a, a1 > 0 is a constant and L is the linear dimension of the substrate. It 
is possible to show that I decays monotonically for all t to its final value; there are no 
intensity oscillations and I does not decay to zero. 

3.3. Discussion 

Quite a lot of work has been done previously on this problem and so before we go on 
to discuss the main contribution of this paper, we want to summarise the main points 
of the previous paragraphs. (See Weeks and Gilmer (1979) for a complete review up 
to that  time; for more recent work, see Meakin et al (1986) and Nozieres and Gallet 
( I  9 8 7 ) ~  

In general, we must make the distinction between an interface which can get rough 
over a finite lateral length scale and one which cannot. This is implicit in the arguments 
of 92: 'roughness' is a characteristic which implies a lateral length scale, depending on 
the physical properties of interest in a given experiment. In other words, there are 
different degrees of roughness, depending on the lateral scale over which the interface 
width diverges, or over which it is observed (i.e. the coherence length of the diffracted 
beam relative to the roughening length). In 43.1 we saw that in the Poisson model 
all columns are independent (there is no lateral motion of the deposited atoms) and 
the (coherent part of the) diffracted intensity is zero in the long-time limit. In the 
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diffusice model, the interface width is finite for all finite column separations on the 
surface, and the diffracted intensity is finite for all time (except in the special case of 
very large deposition). These models act as the two extreme cases: the Poisson model 
is always rough with zero roughening length (zero since even closest neighbours are 
uncorrelated): the difiusice model is never rough (by our definition) since correlation is 
never lost except for columns separated by an  infinite distance. Note that the difusive 
case has the form of the equilibrium behaviour, ( ( ~ ( Y I )  -#(r*))*) -c log(lr1 -r2l) which, 
by the usual definition, is referred to as an  infinite interface. However, the diffracted 
intensity is not zero, regardless of the size of the substrate or  coherence length. 

In some previous work, equation (12) has been modified by the addition of a 
non-linear term V = i .(V#)? in order to make the surface rougher. However, this 
term is not conservative; that is, it acts as a source term since it does not provide a 
mechanism for balanced transfer of particles between columns (gains of one column 
must be the losses of other neighbouring columns). This is easily seen by considering 
the one-dimensional equation 

- = D : + ( $ ) ? + q  Sh  S 2 h  
S t  CX-  

where h = h(.u) is the column height at .Y, and q is the noise term. To see that the 
squared term generates particles on the surface even if the deposition is turned off, 
integrate over the surface 

The quantity d.uh(.u) is the total amount deposited. If the rate is off, the time rate 
of change of this integral is zero. Integration of the ?’ term contributes only at the 
boundary, which is negligibly small for large substrates. The noise term averages to 
zero, and since the remaining term on the right is positive everywhere, then h # 0. 

In order to correct this we will consider a different model in the next section that 
has the desired conservative property, and that also is apparently rough or  smooth 
depending on its internal parameters relative to the strength of the fluctuations in the 
deposition. 

4. Binary model 

The diffusive model does not exhibit a transition from finite to infinite interface width 
since lateral motion is always large enough to restrain the growth of neighbouring 
columns. We now consider a model which does appear to have this property. We start 
with a generalised version of equation (12) 

4 , k f )  = v[4(.Y,t)l + f ’ ( . Y , t )  (20) 

and instead of the diffusive term used above, choose for the interaction a modified 
version called the binary model 
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where 

or in the continuum limit 

The derivatives are summed over the different nearest neighbours indexed by x .  In 
this model the columns exchange atoms at ajixed threshold rate as long as they are 
not of equal height (provided D1 is sufficiently large, which for the moment we will 
assume to be the case). As required, motion of the adatoms depends only on column 
height differences, not on absolute heights. In this model, DI  plays the role of the 
hopping rate, equivalent to those used in $2. This model is particularly appropriate to 
chemisorbed systems where, as shown in figures 3(a)  and 3(b) ,  an important mechanism 
of exchange between columns is that of diffusion down the side of the column. Since 
this proceeds at a finite and constant rate as long as the columns differ in height, 
the binary model should be qualitatively accurate. (It can be seen from this why the 
d i f i s i ve  model is incorrect since the exchange rate between columns is proportional to 
the column height difference, and thus grows large if the height difference is large. This 
is enough to guarantee that the interface width is always bounded in the sense defined 
previously.) Also, as discussed at the end of the previous section, this model conserves 
particle number during the exchange between columns (Bruinsma and Aeppli 1984, 
Kardar er a/ 19861. 

la) I bl 
Figure 3. ( ( I )  Schematic of the hinary model and comparison with a more physical picture. 
Both have a constant rate of exchange between columns as long as there is a difference in 
column height. The dinusire model has an exchange current, J ,  that is proportional to the 
column height difference, J = -Do(dl - do), and so is smooth by the criterion stated in 
the text. ( h )  Schematic of physical diffusion between neighbouring columns. In this case, 
if two columns differ in height, the mechanism which drives the change includes motion 
down the column side. The h i m q  model is qualitatively the same. 

The outline of this section is as follows. In $4.1 we show that a simple effective 
field argument at fixed deposition rate gives a transition temperature, TI  of figure 1, at  
which a finite interface changes over into an infinite one. In $4.2, which is the main part 
of this paper, we obtain this result a second time using a more careful and systematic 
approach. 

4.1 .  Eflecrice ,field 

The column growth equation is 
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Ideally one would like to d o  perturbation theory with this in order to obtain the 
diffracted intensity I ( s : ) .  This would begin by expressing I in terms of the cumulants 
of the disorder 

where we can write the general self-consistent solution to the random dynamics problem 
as 

Z is the coordination number, and defining A 4  = 4 ( r I )  - 4 ( r ? )  the first few terms in 
the series are 

Q, = ((A4o)')  + ( ( A ~ I ) ? )  + 2 ( A 4 o A 4 1 )  - ( A 4 i ) ' .  (27 )  

Perturbation theory is most easily performed when the non-quadratic part of the 
'Hamiltonian' is a polynomial. Since we d o  not want to lose the saturation property of 
this model, some other approach is called for. 

As an  aside we note that the simple case of a two-site system, with column heights 
$(XI) = 41 and $ 2 ,  and difference log(w) 5 42 - 41 can be solved to give 

w(s) 1 - w(s) 
w(t )  = wo(t) (1  + ; I  I ' d s  - ~ 

wo(s) 1 + W ( S )  

where ;' = JoD and wO(t) = exp(jhdsf(s)) .  To lowest order in 7 this gives 

w ( t )  = exp(D'ot - y f )  + C ( y ? )  (29)  

which we will see gives the same transition as the effective field method. 
Having obtained a qualitative idea of the two extreme modes of behaviour of the 

surface, we now wish to make explicit calculations, if possible. To this end, the first 
attempt here is to look at  the average behaviour of the interface. The second and last 
terms in equation (27 )  cancel to lowest order in exp(-arD'), since in this approximation 

(30) 

leaving only the cross term. We can attempt to investigate the general behaviour of 
the remaining term with an  effective field approach. In this context we can write the 
solution as 

( V 2 ( r l ) )  = ( V ' ( r 2 ) )  = ( V ( r , ) ) ?  

7 = D:o, or  assuming saturation 
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So when Z J a  = y the interface no longer grows indefinitely. This provides a ‘zeroth’- 
order solution and implies a transition temperature defined by 

(33) D ~ O  = Z J ~  E z T ,  i~ exp(-E,,/TI 1. 

Thus for low temperature, the surface grows with an unbounded interface width 
since the mechanism for moving particle from tall structures cannot keep up with the 
deposition. At higher termperatures, where the particle motion on the surface (both 
down a column and along lateral distances) is speeded up due to thermal motion, 
the interface width is inhibited from growing beyond a finite amount. Equation (33) 
defines TI of figure 1 in terms of the deposition rate, and has recently been observed 
for Ge deposited on Ge( 110) (Chason er al 1989). 

This presentation provides a semi-microscopic justification for the arguments given 
in $2. To proceed from here we must perform more careful calculations. 

4.2. Saddle point 

Because we assume that the distribution of f ( x , t )  is known and that the relation 
between f and 4 is given by equation (20), i t  is possible to study the nature of the 
resulting system by looking at its average behaviour. The change of variables can be 
done in the continuum limit without too much trouble 

where the Jacobian of the transformation is written 

and the effective ‘action’ is given by 

(36) 
1 s 20 

1 
20 

JF = - 1 d‘x dr (4r - V)’ - d’x dr log(% (f ; 4)) = -HI - H z .  

To investigate the average behaviour of the system, we apply the method of steepest 
descent, or the ‘saddle point’ method. The saddle point equation is found by minimising 
the effective action with respect to the field variable 4 and its derivatives, which in this 
case is 

where 4.x and 4, respectively are the partial derivatives of $(r, t )  with respect to x and 
r.  The full equation can be expressed in terms of functional derivatives of $(xI) = 41 
if H I  and H2 are properly symmetrised. Thus the full non-linear equation of motion 
for the saddle point can be written, before taking the continuum limit 

These functions are easily evaluated as 
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while the second term is 

where cp10 E $Dl(41 - 40). We have also abbreviated the discrete form of the column- 
column interaction as 

I.’, = Jo[tanh(cp,.,+1) + tanh(cp,.,-1)1. (41) 

The full equation can be integrated numerically, but before we discuss the result of that 
effort, consider first the equation of motion in the linear limit, with the idea in mind of 
obtaining a more intuitive description of what to expect. Hz can be approximated in 
the limit of small gradients which is essentially the non-linear version of the Onsager- 
Machlup theory (Graham 1973). After rearranging things, the quadratic part of the 
resulting ‘action’ has the form 

In this approximation the interface obeys a linear equation of motion, the fluctuations 
about the mean are described by a plane wave 

4 - exp(ik.x - iwt). (43) 

If the interface is growing arbitrarily, then we expect this to be reflected in an  instability 
of the dispersion relation w ( k )  as determined by the saddle point equation. Assuming 
small gradients, the saddle point equation can be written in the form 

4u = a4\x + D ? @ J Y \ . K \  (44) 

and where a n  effective ‘diffusion’ coefficient has been defined Dr 3 JoD;(Jo  + io), and 
the resulting dispersion relation is 

W ?  = ak’ - Drk4. (45) 

Long-wavelength excitations are undamped travelling waves, but the important part 
of this expression is for large k ,  since it is the short-wavelength configurations which 
determine the degree of roughness on the surface. If Dz > 0, l a rge4  excitations take 
the form exp(ikx f f i k 2  t ) ,  characteristic of diffusive behaviour (damped excitations), 
and we conclude that the interface width is ‘regular’ since any rough configuration 
imposed by an  external source (i.e. the deposition) will become smooth in time. But 
for k large the dispersion relation leads to exp(ikx f iJ/Dz/k2t),  and we say that the 
interface width is ‘irregular’ in the sense that i t  takes on whatever short-wavelength 
structures are imposed by the source-which we know to be random and uncorrelated, 
in other words, rough. 

The above arguments for the quadratic ‘action’ have employed a number of approx- 
imations which could make the resulting conclusion quantitatively incorrect. However, 
we believe that the qualitative content of the calculation follows through. We have tried 
a numerical solution to the full saddle point equation, and obtained a result that is 
essentially in agreement with the above conclusion. In the interest of computer resource 
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conservation, we used only the one-dimensional version with a random set of initial 
conditions, but the qualitative behaviour was unambiguous: fluctuations are diflusiue 
when :a I J O  and rough for :a 2 Jo. The interpretation of these two properties 
in terms of the saddle point eqiation is that when the system is rough the structure 
simply propagates, as would be expected nf  a dispersive, but non-dissipative medium. 
When it is diffusiue the initial conditions decay exponentially (although part of the 
actual numerical calculation will grow exponentially, characteristic of the two solutions 
oj -- +iJ&k'). The behaviours are distinct and easily recognised, but the distinction is 
not sharply defined quantitatively, since we were unable to run the computation long 
enough to check the transition. Future work in this area is obviously required. 

Thus we conclude that for sufficiently small fluctuations in the deposition rate, 
a, the surface should grow smoothly. As the temperature is lowered (or the rate is 
increased), there will appear a transition to a roughly growing surface. The transition 
temperature is a function of the deposition rate, and increases as the rate increases. 
In reference to figure 1 ,  we have derived an expression for T1 only. T2 remains 
unaccounted for. 

5. Discussion and conclusion 

In figure 4(a) we show a Monte Carlo evaluation of the ASOS model (Weeks and 
Gilmer 1979). In this example we have made several runs which indicate that the 
intensity oscillations at high temperature are strongly damped (curve k), that as the 
temperature is lowered the oscillations first become less dampled (curves j-b) and 
then become completely damped again at T = 0 (curve a), suggesting behaviour 
qualitatively similar to that shown in figure 1. It is common knowledge that a surface 
which grows roughly at low temperature will grow smoothly at higher temperature. 
Recently, experimental evidence has been found (Flynn er a1 1988, Chason et a1 1988) 
that this change in behaviour may be localised at a sharply defined temperature 
(though to our knowledge nothing is known yet about the rate dependence of this 
temperature). In figure 4(b)  we show Monte Carlo evidence that the binary model 
has a finite roughening length. In curves a-g, evaluated at increasing values of Jo,  the 
amount of scattered intensity (at large t )  increases, first from exactly zero, to a finite 
amount at around JO = 0.5, and then quickly increases with increasing Jo .  

The main conclusion of this paper is that in the process of interface growth, the 
surface may grow with a finite interface width, or with an unbounded interface width, 
depending on the strength of the deposition rate relative to the rate at which atoms 
can move laterally on the surface. Essentially what we have shown is that there are 
two length scales, one lateral, determined by the equilibrium properties of the surface, 
and one vertical determined by the external deposition rate. Whether or not diffracted 
intensity is lost depends on the relative magnitudes of these two scales. A different 
way of expressing this condition is to say that there are two timescales involved, one 
determined by the rate of decay of fluctuations on the surface (an equilibrium property), 
and the second fixed by the deposition rate (a dynamic property). Related to this is 
the observation that it is necessary to state both a lateral, as well as a vertical, length 
scale when describing a surface as 'rough' (Lagally and Kariotis 1989). The models 
discussed where used to demonstrate these conclusions. In particular, the binary model 
was shown to have the property of describing either a rough or smooth interface, 
depending on the magnitude of the parameter JO relative to the size of the fluctuations 
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Figure 4. ( a )  Monte Carlo data for the ASOS model showing the diffracted intensity 
oscillations for eleven different temperatures. Curves are shown for various values of T ;  a :  
T = 0.0. b:  T = 0.2. c :  T = 0.4. d :  T = 0.6. e :  T = 1.0. f :  T = 1.2, g :  T = 1.4. h :  T = 1.6, 
i :  T = 2.0, J :  7 = 4.0. k: T = 6.0. ( h )  Monte Carlo data for the hinary model showing the 
decay of diffracted intensity for seven different values of the column coupling constant, J o ;  
a :  J U  = 0.00, b: J(1 = 0.03, C:  Jo  = 0.04. d :  J o  = 0.05. e :  J o  = 0.06, f:  Jo  = 0.10. g :  Jo  = 0.20. 
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in the deposition. As far as we can tell, this model does not yield a finite roughening 
length. 

While this work was in progress, numerical work appeared in print presenting some 
of the material which we have analysed in 54 (Karunasiri er a1 1989). The interaction 
term used by these authors is qualitatively the same as that in the binary model, 
and produces the expected change over from rough to smooth growth, depending on 
temperature and deposition rate. 
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